Главная Обратная связь

Дисциплины:

Архитектура (936)
Биология (6393)
География (744)
История (25)
Компьютеры (1497)
Кулинария (2184)
Культура (3938)
Литература (5778)
Математика (5918)
Медицина (9278)
Механика (2776)
Образование (13883)
Политика (26404)
Правоведение (321)
Психология (56518)
Религия (1833)
Социология (23400)
Спорт (2350)
Строительство (17942)
Технология (5741)
Транспорт (14634)
Физика (1043)
Философия (440)
Финансы (17336)
Химия (4931)
Экология (6055)
Экономика (9200)
Электроника (7621)


 

 

 

 



Оборудование для контроля геометрии кузовов легковых автомобилей



Поверхность кузова легкового автомобиля представляет собой сложнейшую пространственную фигуру, состоящую из большого чис­ла составных элементов, имеющих свои размеры, форму и простран­ственную ориентацию относительно друг друга. Для контроля геомет­рии кузовных элементов и проемов документацией производителей автомобилей предлагается определенная совокупность контрольных точек, имеющих координатные размеры относительно выбранной измерительной базы и размерные расстояния во взаимном располо­жении. Выполнить контроль геометрии кузова — значит определить координаты всех контрольных точек и сравнить их с заводской базой данных.

Операции по контролю геометрии кузова могут выполняться на этапе диагностирования повреждений кузова, при устранении дефор­маций кузова и при контроле качества кузовных работ. Для этих це­лей на ПТС используются контрольно-измерительные инструменты, приспособления и стенды.

Контрольно-измерительные инструменты и приспособления. К ним относятся универсальные линейки, рулетки и штангенциркули, спе­циальные штанген инструменты (линейки и штангенрейсмусы), а так­же шаблоны.

Специальные линейки состоят из штанги, на которую нанесена или не нанесена измерительная шкала, неподвижного и подвижного на­конечника.

Кузовные штангенрейсмусы представляют собой штативную штан­гу с измерительной шкалой и выдвижную линейку с измерительной шкалой и наконечником.

Кузовные шаблоны бывают двух видов — для контроля проемов ку­зова и для фиксации кузова на раме стенда. Шаблоны первого вида имеют конфигурацию, идентичную конфигурации контролируемого проема кузова, и выполнены с допусками на порядок жестче, чем ука­занные в конструкторской документации на данный элемент кузова.

Шаблоны второго вида предназначены для использования совме­стно с кузовным стапелем (рис. 2.84). Эти шаблоны выпускаются комплектно для каждой модели автомобиля. Каждый шаблон разра­батывается под свою контрольную точку кузова и должен устанавли­ваться на раму стапеля, которая является измерительной базой, в конкретном месте.

Шаблон представляет собой силовую конструкцию, имеющую поса­дочные места и быстродействующий зажим, характерный для данной точки платформы кузова. Деформированный кузов как бы насаживает­ся на очень точную и прочную колодку. Шаблоны без пропусков повто­ряют всю сеть контрольных точек поврежденного кузова, что позво­ляет наглядно выявить деформированные участки без проведения дополнительных обмеров. Кроме этого, шаблоны, являясь силовыми элементами, значительно повышают жесткость кузова и обеспечива­ют сохранение геометрии при приложении к нему любых тяговых усилий.

Рис. 2.84. Система шаблонов MZ для установки кузова на стапель SEVENNE фирмы SELETTE (Франция)

Основной недостаток шаблонной системы измерения геометрии кузова — ее чрезвычайно узкая специализация (на каждую модель кузова — свой комплект, в компании SELETTE — основоположнике шаблонного метода, — имеется несколько тысяч комплектов) и, как следствие, очень высокая цена (от 3000 до 10 000 долларов США).

Измерительные стенды. Стенды для измерения и контроля геомет­рии кузова выпускаются как для автономного применения, так и для работы совместно с тяговым кузовным стапелем. В последнем случае измерительный стенд является частью конструкции стапеля. В стен­дах используются измерительные системы, реализующие измерения в прямоугольной пространственной, полярной пространственной и комбинированной системах координат. По виду получения и переда­чи измерительного сигнала стенды имеют измерительные системы механические, электронно-механические, оптические, ультразвуко­вые (рис. 2.85). Все измерительные системы, кроме механической, современных стендов сопрягаются с персональными компьютерами, в которых заложены базы данных по кузовам различных моделей ав­томобилей разных производителей.

Рис. 2.85. Измерительные стенды для контроля геометрии кузовов легковых автомобилей:

а — METRO 2000 с механической измерительной системой (измерения — в прямо­угольной системе координат) фирмы SELETTE (Франция); б— NAJA с электронно-механической системой (измерения — в полярной системе координат) фирмы SELETTE (Франция); в — PMS с комбинированной (ультразвуковой и механической системой измерения в полярной системе координат) WEDGE CLAMP SYSTEM (Ка­нада)

 

Механические измерительные системы являются универсальными системами. Они монтируются на жесткой раме, которая устанавлива­ется на стапель или свое основание. На раме крепятся передвижные консоли с измерительными телескопическими стойками для нижней части кузова и штангенрейсмусы — для боковых поверхностей кузо­ва. Данные по координатам контрольных точек различных моделей автомобилей занесены в специальные карты, поставляемые в комп­лекте со стендом.

Электронно-механические системы измерения имеют механичес­кую телескопическую измерительную штангу с измерительным нако­нечником и приемный блок, в котором координаты измерительного наконечника преобразуются в электрические сигналы по принципу «электронной мыши* компьютера. Стенды с электронно-механичес­кой системой измерения работают автономно и имеют в своем соста­ве измерительную тумбу и приборную стойку. Сигнал с приемного блока поступает в ПК, где по специальной программе он обрабаты­вается и выдается на дисплее в виде координаты контрольной точки. Измерительная тумба и приборная стойка связаны между собой ра­диоканалом. Перед началом измерений измерительная тумба прочно фиксируется под автомобилем, поднятым на подъемнике, и, в каче­стве исходной информации, в компьютер вводятся координаты трех известных контрольных точек, местоположение которых в данном автомобиле соответствует конструкторской документации. Эти коор­динаты являются базовыми для остальных измерений.

Ультразвуковая измерительная системаоснована на построении трехмерной геометрической модели. Данные считываются излучате­лями и направляются на микрофоны, установленные по всей поверх­ности балки. Каждый излучатель связан с шестью микрофонами. Приемник определяет нахождение излучателя с точностью до десятой доли миллиметра. Для измерения автомобиля компьютер на основе минимум трех неповрежденных точек определяет плоскость, парал­лельную днищу. Все последующие измерения производятся относи­тельно этой плоскости. К измеряемым точкам автомобиля крепятся ультразвуковые датчики-излучатели. Датчики соединяются проводами с приемной балкой, расположенной под автомобилем. Звук восприни­мается микрофонами, находящимися на балке. Время прохождения звука от датчика до микрофона позволяет определить координаты точки на кузове в трех измерениях относительно найденной плоскости. Все точки, как базовые, так и измеряемые, отображаются на экране компьютера в графическом и цифровом виде. Данные измерения срав­ниваются с заводскими параметрами. И вычисляется расхождение. Информация по каждому «измеренному» автомобилю сохраняется в памяти компьютера. Ультразвуковая система имеет два технологичес­ких минуса. Первый — турбулентность. Из-за направленного потока воздуха, например сквозняка, микрофон может потерять сигнал. В таком случае пропадают данные на мониторе. Второй минус отно­сится больше к конструктивным особенностям. Излучатели, при­крепляемые к днищу, связаны с балкой проводами, которые подклю­чены к источнику питания.

Лазерные измерительные системы, в отличие от ультразвуковых, — беспроводные. А точнее, в конструкции предусмотрен только один провод, связывающий систему с компьютером. Снизу к днищу при­крепляется лазерный излучатель. А к каждой технологической точке крепятся специальные мишени, соответствующие заводским пара­метрам измеряемого автомобиля. Сигнал представляет собой высоко­частотную вспышку вполне определенной силы и яркости.

Излучатель, вращаясь с огромной частотой, считывает информа­цию о геометрии кузова, о состоянии 46 кузовных точек, одновре­менно выводя результаты на монитор компьютера. Например, лазер­ная система американской фирмы Kargrabber позволяет быстро производить обмер и кузовной ремонт автомобиля. Лазер значитель­но упрощает процедуру подгонки деталей кузова, так как дает воз­можность мгновенно сопоставлять их положение относительно друг друга.

Система Genesis от Chief бесконтактная, использует две лазерные головки, вращающиеся со скоростью 750 об/мин. Принцип состоит в том, что на кузове закрепляются специальные пластины-мишени с нанесенными штрихкодами. Отражаясь от них, луч возвращается к лазерной головке, являющейся одновременно приемником, а компь­ютер просчитывает точные координаты контролируемых точек кузо­ва. Система не требует калибровки и позволяет производить измере­ния во время правки кузова. База данных содержит в себе три отдельные библиотеки сведений о геометрии кузовов.

Измерительные радиосистемы. Использование мультичастотного радиосигнала в системах измерений имеет свои плюсы — на резуль­тат работы не влияет турбулентность, перепады напряжения (как в ультразвуковых системах), перекрывание одной мишенью другой (как в лазерных системах). Измерительный модуль такой системы — это передвигающаяся по направляющим измерительная головка с шарнирным удлинителем. При перестановке наконечника компью­тер автоматически определяет и распознает его. В измерительной си­стеме Naja Evolution фирмы Celette (Франция) применена технология Bluetooth (оцифрованный радиосигнал). Она позволила увеличить скорость и качество передачи данных, а также исключить помехи.

 



Просмотров 9724

Эта страница нарушает авторские права




allrefrs.su - 2025 год. Все права принадлежат их авторам!